
 
 

Copyright © 2012 by Klee Associates, Inc. 
www.JDEtips.com 

 

 
 
 

 
 
 
 
 
 

Business Function Error Handling in UBEs 
by Brian Oster 
 

Editor's Note:  What happens when a Business Function (BSFN) throws an error in a UBE? 
It's like that proverbial fallen tree in the woods; even if your users don't see it, it's still there. 
Wouldn't it be nice, though, if you could get a warning on those BSFN errors in a UBE, just like 
you do in an APPL, before further processing occurs? Brian Oster has a way to make that 
happen. In this article, he outlines the steps to take and offers plenty of codes to help you get 
started.  

Overview 

Business Functions (BSFNs), both C and NERs, are very tightly coupled with Interactive 
Applications (APPLs) when it comes to error handling. When a function is called from an APPL, 
any errors or warnings thrown by that function are immediately displayed to the user in the APPL; 
and depending on which event the function was called from, may stop processing the action that 
initiated the event (see Figure 1). In addition to the error message, information about the error or 
warning is also displayed such as the Error ID and the function’s source file and line number 
where the error was thrown (see Figure 2).   
 

 
Figure 1:  Error Displayed in Address Book When User Tries to Delete a Record that is In 
Use, and Stopping the Delete Action. 
 

March 2012 
On Technical/ 

Customizing EnterpriseOne 
 



 

Business Function Error Handling in UBEs 
 

 

 
Copyright © 2012 by Klee Associates, Inc.            www.JDEtips.com Page 2 
 

 
Figure 2:  Expanded Error Information for the Error Displayed in Figure 1 
 
Furthermore, when a function is called from an APPL, all this error handling behavior happens by 
default without any additional code or configuration by the developer. Unfortunately, this default 
behavior does NOT extend to UBEs. There is not any built in BSFN error handling mechanism in 
the UBE engine. If an error or warning is thrown from a function that is called from a UBE, nothing 
is displayed in the output of the UBE to the user and nothing prevents further processing in the 
UBE’s event or the UBE itself. Obviously this can pose a pretty big problem if the developer is 
calling BSFNs from the UBE to do data validation, or worse, create transactions. Some BSFNs try 
to address this functionality gap by returning the error ID as a return parameter of the function so 
that the caller of the function can check to see if an error occurred. However, this is a very poor 
work around for several reasons:   
 

 This only returns the error ID without any error message or additional error information.   

 Only one error ID can be returned; if there were multiple errors there is no simple way to 
return the entire list of error IDs to the caller.   

 The error may not be thrown directly in the called function at all, but instead by a function 
call made inside of the called function or even further down the call stack. More than 
likely this error ID will not be returned by the top level function call made from the UBE.   

 Finally, and probably more importantly, most functions do not employ this work-around of 
returning the error ID as a parameter. In other words, you are completely at the mercy of 
the function you are calling as to whether or not you can check for errors and warnings 
when the function is called from your UBE. 

 

In this article I will show you how you can implement a simple technique to create an error 
handling mechanism inside of UBEs that works much the same way the default error handling 
mechanism works inside of APPLs. Additionally this tip will work with calls to any BSFN, doesn’t 
require any special code or return parameters by the called BSFN, and can catch any error, 
regardless of where in the call stack the error is thrown. 

Example 

To illustrate, I have set up a very simple example; we'll 
start by using this custom table I created with three 
fields (see Figure 3). 
 
 
 
I then created a simple APPL with a Search and Select form over the table as well as a 
Headerless Detail form to add/edit the data in the table. In the “Row Exited & Changed Inline” 
event of the Headerless Detail form, I call two functions as per the following ER code: 
 
 
 

Figure 3:  Example Table Structure 



                                                       

 

 

 
Knowledge 
      

 

This Article Continues… 
 

 

Subscribers, log in from our main search page to access the full article: 

www.JDEtips.com/MyAccess.html 

 

Not a Subscriber? Gain access to our full library of JDE topics: 

www.JDEtips.com/JD-Edwards-Library 

 

 

Visit www.JDEtips.com for information on the JDEtips University schedule, private training and consulting, 
and our Knowledge Express Document Library.  

License Information: The use of JDE is granted to JDEtips, Inc. by permission from J.D. Edwards World 
Source Company. The information on this website and in our publications is the copyrighted work of JDEtips, 
Inc. and is owned by JDEtips, Inc.  

NO WARRANTY: This documentation is delivered as is, and JDEtips, Inc. makes no warranty as to its 
accuracy or use. Any use of this documentation is at the risk of the user. Although we make every good faith 
effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors. 
JDEtips, Inc. reserves the right to make changes without prior notice.  

Oracle and J.D. Edwards EnterpriseOne and World are trademarks or registered trademarks of Oracle 
Corporation. All other trademarks and product names are the property of their respective owners.  

Copyright © by JDEtips, Inc. 

 

https://www.jdetips.com/
https://jdetips.com/MyAccess.html
https://jdetips.com/JD-Edwards-Library/default.html
https://www.jdetips.com/

