
Troubleshooting Commit Failures
by Mike Wright, Werner Co.

W E1 Editor’s Note: There’s nothing clients love more than those cryptic error messages that
say, “something’s wrong but I’m not going to tell you what”. Mike Wright helps us get on the track
of hunting down the root cause of the occasionally mystifying commit failure errors. He gives us
not one, not two, but three places to look for answers.

Probably one of the more frustrating and difficult issues to deal with can be commit failures from
within applications. I’ve seen top-notch application leads throw up their hands in despair when
seeing these errors. These errors typically appear as a generic error on screen and they don’t
always show up immediately after completing a task. It could be minutes before you see the error,
making it even tougher to deal with.

Commit failures are quite often data related but that does not make it any easier to handle. I’ll
look at three of the more common things that can cause these errors (Table problems, Row
security problems, and Timeout problems) and explain each one. There are other reasons that
can cause commit failures, but the three areas I will focus on will give you a head start on a good
portion of these errors.

What Is A Commit Failure?

To understand a commit failure, you must first understand the concept of transaction processing.
Transaction processing is used to maintain data integrity. A set of related transactions is treated
as one entity or unit. What that means is that either the entire set gets written to the database
tables or none of it does. For example, you would want the header and detail of a new transaction
to be paired up, in a sense, upon entry. Either they both exist or neither exists. Transaction
processing treats them as one unit.

If something causes a set of transactions to fail, you get a commit failure error message and the
entire set is rolled back. It’s as if the set of transactions was never created at that point.
Primarily in JD Edwards you will see this kind of behavior with the major business functions such
as sales order entry, ship confirm, purchase order entry. It is something that has to be set up
however by a developer. There are check boxes on business functions that developers can use to
make this functional so it’s not necessarily something used everywhere in the system.

Here’s an example of what I’m talking about:

You enter a sales order and when you click the Place Order button or the final OK at the end of
the process, the sales order entry master business function “end doc” is kicked off. That business
function runs asynchronously, which means that it runs on its own either locally or on a server,
allowing you to go on to other applications. The business function uses transaction processing so
the records involved for this transaction are committed, or locked, until the process either
completes or fails. If it fails, you will get an error similar to the one shown in Figure 1.

Te
ch
nic

al
/ T
ro
ub
les

ho
oti
ng

Figure 1 - Commit Failure Error

If you see that, then you won’t find the sales order number in the header or the detail. It will be as
if entry was cancelled in mid-stream. You will have used up a next number but that’s about it. If
the process completes, then you will see all of the proper information in the tables.

It’s important to note that you could be in another application, even one unrelated to your
previous transaction, and still get this message minutes later. It just depends on how much
processing is involved before the error occurs.

As you can see from Figure 1, the system is generating a pretty generic error message. It
doesn’t give you much to go on, so here are three areas to start looking, and the order in which I
often will investigate them.

1. Table problems
2. Row security
3. Timeout value

1. Table Problems

The first thing I do with a commit failure is actually follow the advice of the error message. It is
good advice in this case. I immediately go to the jde.log looking for table error messages. You
will get these messages even if the debug logging is not turned on. In Figure 2, you will see an
example of a jde.log with a commit failure message.

Troubleshooting Commit Failures

2

This Article Continues…

Subscribers, log in from our main search page to access the full article:

www.JDEtips.com/MyAccess.html

Not a Subscriber? Gain access to our full library of JDE topics:

www.JDEtips.com/JD-Edwards-Library

Visit www.JDEtips.com for information on the JDEtips University schedule, private training and consulting,
and our Knowledge Express Document Library.

License Information: The use of JDE is granted to JDEtips, Inc. by permission from J.D. Edwards World
Source Company. The information on this website and in our publications is the copyrighted work of JDEtips,
Inc. and is owned by JDEtips, Inc.

NO WARRANTY: This documentation is delivered as is, and JDEtips, Inc. makes no warranty as to its
accuracy or use. Any use of this documentation is at the risk of the user. Although we make every good faith
effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors.
JDEtips, Inc. reserves the right to make changes without prior notice.

Oracle and J.D. Edwards EnterpriseOne and World are trademarks or registered trademarks of Oracle
Corporation. All other trademarks and product names are the property of their respective owners.

Copyright © by JDEtips, Inc.

https://www.jdetips.com/
https://jdetips.com/MyAccess.html
https://jdetips.com/JD-Edwards-Library/default.html
https://www.jdetips.com/

