

Copyright © 2003 by Klee Associates, Inc. Page 1

www.JDETips.com

Writing Platform Independent Business

Functions for OneWorld®

By John Oliver, Unity Enterprise Solutions

Introduction
One of the great advantages of the C language is its inherent platform independence. C
compilers are available for almost every hardware and operating system imaginable. Why this
article then? The reason is that while the C language is largely platform independent, the
Operating System (OS) that hosts the software is not.

The OS provides a layer between the application software and the hardware platform. One of
the main features provided by this layer is access to the disk file system and to the host’s
communications systems. These are two of the main paths through which OneWorld systems
interoperate with –other systems.

It follows then, that the areas of interoperability and integration with remote systems throw up
platform independence issues most often.

This article explores some issues that arise from this platform dependence and presents
some approaches to overcoming them. Finally, a case study is presented for a Find Files
function.

Why Bother with Platform Independence?

The answer is this: we generally would like to be able to write portable C code that can run on
any platform we are likely to encounter. In the OneWorld environment, this typically means
Win32 for Fat Clients, Citrix servers, and NT serve rs; and UNIX and OS400 for UNIX and
AS400 Enterprise servers. In this article we will concentrate on the Win32 and generic UNIX
platforms.

Typical Platform Independence Issues

As discussed, many system integration facilities provided by the OS are not platform
independent. Some examples are:

File Systems

We are all familiar with the Win32 file system: Paths to files may be specified from a drive
letter or from a URL, e.g., h:\mydirectory\myfile.csv,
\\servername\sharename\hisdirectory\hisfile.csv. But UNIX systems use neither drive letters
nor URLs. To make matters worse, the forward slash is used as a path separator, e.g.,
/home/username/hisdirectory/hisfile.csv.

Network Communications

On Win32 systems, reads and writes to network sockets are performed with the send() and
recv() system calls. However, on UNIX systems the system calls read() and write() are used.

Synchronisation

Win32 systems provide amongst others, WaitForSingleObject() and WaitForMultipleObjects()
to help provide synchronisation between threads. UNIX systems, depending on which thread
library is used, typically use pthread_join() but have no simple equivalent to
WaitForMultipleObjects().

Approaches to Platform Independence
So how do we go about writing code to avoid the problem of Platform Dependence? Here are
some approaches:

Copyright © 2003 by Klee Associates, Inc. Page 2

www.JDETips.com

Writing Platform Independent Business

Functions for OneWorld®

Avoid All Platform Dependent Routines

By avoiding the use of OS system calls that are not provided by all your target environments,
the problem goes away all together. Unfortunately, as discussed, this is often impossible in
System Integration projects.

Use an Abstraction Layer
An Abstraction Layer (AL) is a library of generic operations (typically available from 3rd party
suppliers) that is available for a number of host platforms. By providing a common interface to
all the functions, identical code can be deployed to all the supported platforms. The only
difference is the binary AL library, which is platform specific. A different library is required for
each supported platform.

Advantages
No special allowance is needed for Platform Dependant issues as long as the AL functions
are always used.

Disadvantages
• The requirement to deploy the correct binary library for the AL adds to the complexity

of a site’s management.
• The cost of the AL
• The learning curve to become productive with the AL

Use Conditionally Compiled Code
The C compiler and language provide a means for the underlying platform to be identified at
compile time via C macros. The C compiler has predefined macros such as __sun, __hpux,
_MSC_VER and __ILEC400__, that indicate which platform is being compiled to. In
OneWorld, the standard jdenv.h include file uses these macros to set one of its own macros
such as JDENV_SUN, JDENV_HPUX, JDENV_PC, and JDENV_AS400. In our code, we can
test these macros and conditionally compile an appropriate block of code. For example:

#if defined JDENV_PC
/* do some Win32 code here */
…
#elseif defined JDENV_UNIX
/* do some UNIX code here */
…
#elseif defined JDENV_AS400
/* do some AS400 code here */
…
#else
#error ERROR: This platform is not supported!
#endif

Advantages
No AL to purchase or learn.

Disadvantages

The code may become bloated with conditional constructs.

Case Study: a Find Files Function for Win32 & UNIX
Consider this scenario: a function is required to search a directory for files matching a pattern.
This function is required for a UBE that may run on a UNIX Enterprise server, an NT
Enterprise server, a Citrix server, or a Fat Client workstation. Iterative calls to this function
return the file names one at a time.

Knowledge

This Article Continues…

Subscribers, log in from our main search page to access the full article:

www.JDEtips.com/MyAccess.html

Not a Subscriber? Gain access to our full library of JDE topics:

www.JDEtips.com/JD-Edwards-Library

Visit www.JDEtips.com for information on the JDEtips University schedule, private training and consulting,
and our Knowledge Express Document Library.

License Information: The use of JDE is granted to JDEtips, Inc. by permission from J.D. Edwards World
Source Company. The information on this website and in our publications is the copyrighted work of JDEtips,
Inc. and is owned by JDEtips, Inc.

NO WARRANTY: This documentation is delivered as is, and JDEtips, Inc. makes no warranty as to its
accuracy or use. Any use of this documentation is at the risk of the user. Although we make every good faith
effort to ensure accuracy, this document may include technical or other inaccuracies or typographical errors.
JDEtips, Inc. reserves the right to make changes without prior notice.

Oracle and J.D. Edwards EnterpriseOne and World are trademarks or registered trademarks of Oracle
Corporation. All other trademarks and product names are the property of their respective owners.

Copyright © by JDEtips, Inc.

https://www.jdetips.com/
https://jdetips.com/MyAccess.html
https://jdetips.com/JD-Edwards-Library/default.html
https://www.jdetips.com/

